ヒグチ ケイ
Higuchi Kei
樋口 慧 所属 東邦大学 薬学部 薬学科 職種 准教授 |
|
論文種別 | 原著 |
言語種別 | 英語 |
査読の有無 | 査読あり |
表題 | Role of OAT4 in Uptake of Estriol Precursor 16α-Hydroxydehydroepiandrosterone Sulfate Into Human Placental Syncytiotrophoblasts From Fetus. |
掲載誌名 | 正式名:Endocrinology |
掲載区分 | 国外 |
巻・号・頁 | 156(7),pp.2704-12 |
著者・共著者 | Masatoshi Tomi,Hiromi Eguchi,Mayuko Ozaki,Tomohiro Tawara,Sachika Nishimura,Kei Higuchi,Tetsuo Maruyama,Tomohiro Nishimura,Emi Nakashima |
発行年月 | 2015/07 |
概要 | Estriol biosynthesis in human placenta requires the uptake of a fetal liver-derived estriol precursor, 16α-hydroxydehydroepiandrosterone sulfate (16α-OH DHEAS), by placental syncytiotrophoblasts at their basal plasma membrane (BM), which faces the fetal circulation. The aim of this work is to identify the transporter(s) mediating 16α-OH DHEAS uptake at the fetal side of syncytiotrophoblasts by using human placental BM-enriched vesicles and to examine the contribution of the putative transporter to estriol synthesis at the cellular level, using choriocarcinoma JEG-3 cells. Organic anion transporter (OAT)-4 and organic anion transporting polypeptide 2B1 proteins were enriched in human placental BM vesicles compared with crude membrane fraction. Uptake of [(3)H]16α-OH DHEAS by BM vesicles was partially inhibited in the absence of sodium but was significantly increased in the absence of chloride and after preloading glutarate. Uptake of [(3)H]16α-OH DHEAS by BM vesicles was significantly inhibited by OAT4 substrates such as dehydroepiandrosterone sulfate, estrone-3-sulfate, and bromosulfophthalein but not by cyclosporin A, tetraethylammonium, p-aminohippuric acid, or cimetidine. These characteristics of vesicular [(3)H]16α-OH DHEAS uptake are in good agreement with those of human OAT4-transfected COS-7 cells as well as forskolin-differentiated JEG-3 cells. Estriol secretion from differentiated JEG-3 cells was detected when the cells were incubated with 16α-OH DHEAS for 8 hours but was inhibited in the presence of 50 μM bromosulfophthalein. Our results indicate that OAT4 at the BM of human placental syncytiotrophoblasts plays a predominant role in the uptake of 16α-OH DHEAS for placental estriol synthesis. |
DOI | 10.1210/en.2015-1130 |
PMID | 25919187 |