ノガワ トモアキ
Nogawa Tomoaki
能川 知昭 所属 東邦大学 医学部 医学科 職種 講師 |
|
論文種別 | 原著 |
言語種別 | 英語 |
査読の有無 | 査読あり |
表題 | Dimensional Reduction of Dynamical Systems by Machine Learning: Automatic Generation of the Optimum Extensive Variables and Their Time-Evolution Map |
掲載誌名 | 正式名:Journal of Statistical Mechanics: Theory and Experiment 略 称:J. Stat. Mech. |
掲載区分 | 国外 |
巻・号・頁 | pp.123404 |
著者・共著者 | Tomoaki Nogawa |
担当区分 | 筆頭著者 |
発行年月 | 2023/12/18 |
概要 | A framework is proposed to generate a phenomenological model that extracts the essence of a dynamical system (DS) with large degrees of freedom using machine learning. For a given microscopic DS, the optimum transformation to a small number of macroscopic variables, which is expected to be extensive, and the rule of time evolution that the variables obey are simultaneously identified. The utility of this method is demonstrated through its application to the nonequilibrium relaxation of the three-state Potts model. |