コンノ ヒロキ
Konno Hiroki
今野 大輝 所属 東邦大学 理学部 生命圏環境科学科 職種 准教授 |
|
論文種別 | 原著 |
言語種別 | 英語 |
査読の有無 | 査読あり |
表題 | Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution |
掲載誌名 | 正式名:Catalysis Today |
巻・号・頁 | 352,pp.220-226 |
著者・共著者 | Hiroki Konno,Yuta Nakasaka,Kousuke Yasuda,Miho Omata,Takao Masuda |
担当区分 | 筆頭著者,責任著者 |
発行年月 | 2020 |
概要 | © 2020 Elsevier B.V. Nanocrystalline zeolitic imidazolate frameworks 8 and 67 (ZIF-8 and ZIF-67) were prepared via surfactant-assisted synthesis in aqueous solution at room temperature. The synthesis without surfactant yielded crystal sizes for ZIF-8 and ZIF-67 of 1.19 and 2.95 μm, respectively. However, their crystal sizes obtained via surfactant-assisted synthesis were 81 and 150 nm, respectively. The Brunauer–Emmett–Teller (BET) surface area and micropore volume remained almost constant regardless of the crystal size. TGA analysis confirmed that ZIF-8 and ZIF-67 have sufficient thermal resistance for water treatment. Highly crystalline ZIF-8 and ZIF-67 with different crystal sizes could be obtained, and these ZIF crystals were used as adsorbents for adsorptive removal of perfluorooctane sulfonate (PFOS) from aqueous solution. The amount of PFOS adsorbed by ZIF-67 (734.7 mg-PFOS/g-ZIF-67) was considerably higher than that absorbed by zeolite, activated carbon, and ZIF-8. Additionally, the crystal downsizing was effective in improving the adsorption rate, and adsorption equilibrium was reached faster by nanocrystalline ZIF-67 than by macrocrystalline ZIF-67. This feature makes nanocrystalline ZIF-67 one of the most effective and promising adsorbents for removing PFOS from aqueous solution. |